Aspic: A Line-Art Processor

Philip Hazel

Aspic: A Line-Art Processor

Author: Philip Hazel

Copyright © 2022 University of Cambridge

Revision 2.00 09 October 2022

Contents

1. INTrOdUCTION 10 ASPICcooiniieieeee ettt et b e e te s beebeeseenes 1
1.1 The aspiC COMMANGociiiiieieeee ettt sttt s e reesae s e beeseensas 1
2. Simple ASPIC @XAMPIESc.ooviiiieeiceeeeee ettt 3
3. General operation Of ASPICcoovoiiieiieeeeeeee e 12
3.1 Position of the coordinate OFiQinc.coeviiieieieeeceeeee e 12
3.2 The BOUNAING DOXocviieiiiieeeeeee ettt st reesaesse s 12
. ASPICINPUL ..ottt ettt et e e te e b e b e beesaesbesbeeseessesbesseessensansens 13
4.1 Command FOrMALc.ooiiiieie ettt 13
4.2 File INCIUSION ...oviiiieecte ettt sttt b ettt beste s enneneas 13
B. ASPIC VAHADIES ..ottt b ettt ne e na s 14
6. ASPIC IMACKOSoceooniiiiiiciieieeeeeee ettt ettt ettt e et e e te e b e beeteeste s e e seesaessesseeseessessesseessensensens 15
7. Types of value used in COMMANAScoooiiiiiiiiciceeeeee e 17
Tl QANQIES oottt ettt et e e be et rb et e e te e st et e ae st esbesreesaensatens 17
7.2 <DOXPOINTS ..ottt ettt ettt e e teeteesb e beete e st e b e ae st enseereeseensantens 17
7.3 KCOIOUIS <.ttt ettt ettt s bt st et et e st e st ebentesenneneas 17
T4 <OFEYIBVEIS ...ttt ettt ettt et b e e te st e b e ae st ensesreeseensenens 17
7.5 QINEEQEIS oottt ettt ettt et e st e bt esb e beeteesae b e ese e st ensesreesaensantens 17
T8 <IBDEIS ..ottt 17
7.7 <UBNGIND> .ottt et b e ae et esbeereereenbebans 17
7.8 POSIHIONDS ..ottt ettt et et ettt e e s beeteesb e beeteesae s e eaeestessesreeseensantens 17
8. Drawing objects and teXtcoooiiiiiee e e 19
BT TG ettt h et n bbbt n e st bente b enneneas 20
8.2 @ICAITOW ..ottt ettt ettt ettt ettt ettt e e st e st e b e e b et e st e st ebesbe s et eneeseebentensenneneas 22
8.3 @ITOW ettt sttt ettt ettt b et b e e a bbbt e st n bbb et e st e st b e te s enneneas 22
B4 DOX ettt ettt b ettt ettt ne s ne et ne s enenes 23
8.0 CIICIE et b bttt b et eneas 24
8.8 CUIVE ..ottt ettt s et et s b et s bttt e e st e bbb eteneeneas 24
8.7 BIlIPSE ettt ettt r bt eere e st e b e ae st esbesreesaensentens 24
B8 HAIC et h ettt b ettt n b bt nneneas 25
8.9 TDOX ettt et a ettt ettt ne b n et ne s eaenes 25
810 HCIFCIE ettt b ettt b et eneas 25
B.TT HCUIVE ettt ettt b et st b et et e e et e st ebeste s eneeneas 25
812 HEIIPSE ettt ettt ettt ettt e e be et rb e be e teesb e b e ae st enseereesaensentans 25
813 HlINE ettt ettt n ettt nes 25
814 TINE ettt a ettt ettt n bt ne et ne e esenes 25
81D BEXE ettt b ettt ettt et st ne e eaenes 26
9. FIlled SRAPESoooei ettt sttt s s ne s 28
10. Altering the “last’ itemM ..o e 29
11. Changing the current direCtionc.oooiiiiiiieee e 30

iii

12. Font control and character CoOdingcc.cocooiiiiiiniiiii e 31
12.1 The bindfont COMMANGc.ooiiiiee e 31
12.2 The setfont COMMANGooiiiiie e 31
12.3 The textdepth and fontdepth commandsccoooiriiiiniieee, 31
12.4 Input character ENCOTINGcoeruiiiirieeeeee ettt 31
12.5 PostScript output character eNCOdiNgcccovveviieiiirieee e 32
12.6 SVG output character €nNCOdiNgGccooeirieirieiieieeeeee e 33

13. Overall Aspic cONfigUIation ..o 34

13.1 boundingbox
13.2 MAGNITY ettt 34
13.3 resolution

... 34
14. Saving and restoring the environmentcooiiie 35
15. Changing environment parameterscccooiiiiiiinene e 36
16. List of COMMANAS ..o 38

v

1. Introduction to Aspic

Aspic is a program that converts a textual description of a line drawing into instructions that can be
processed by standard software in order to draw the picture. Usually this happens when the picture is
included in some other document. This method of defining line art graphics is the same as that of the
PIC system, described by Kernighan in Software — Practice and Experience, 12, pages 1-21 (1982),
though the details of the Aspic commands are quite different. Here is an example of the kind of
picture Aspic can produce:

— Daemon

I

Reception
process

Queue
» runner

N

Delivery
process

v

v

}

Reception
process

Local Remote
delivery delivery

Aspic is written in C. It was originally written in the early 1990s, but the code has recently (2022)
been tidied up and made more robust. It is developed on Linux and is supplied with a conventional
configure command, but as it contains no system-specific code, it should be possible to run it in any
environment that has a standard C compiler and library.

Aspic reads Unicode input in UTF-8 format. The default output format is Encapsulated PostScript
(EPS), but there is also support for output in Scalable Vector Graphics (SVG) format. Both these
formats are widely supported by browsers and text-processing software. Files generated by Aspic can
be displayed on their own by commands such as gv (eps), evince (eps), feh (svg), giv (svg) and the
display command that is part of the ImageMagick suite (both formats).

Aspic supports the inclusion of text in drawings, but it does no text processing of its own. The
implementation of operations such as text justification and centering is left to the back-end rendering
processor. Aspic uses the font size to guess how much vertical space to leave between lines; this can
be increased by the user if necessary. Character encoding is discussed in chapter

1.1 The aspic command
The command to run Aspic is as follows:
aspic [options] [input [output]]

If no input or output is given, Aspic reads from the standard input and writes to the standard output. If
an input file name is given without an output, an output file name is created by removing the input’s
extension (if any), and adding .eps or .svg as appropriate. The standard input or output may be
explicitly referenced by specifying a single hyphen character. The options are as follows:

-help causes Aspic to display usage information on the standard output, and then exit.

-nv disables the use of Aspic variables. This means that dollar characters in the input file are no
longer treated specially. The option is useful when there are dollar characters in an Aspic source that
does not make use of Aspic variables.

-eps or -ps (the default) causes Aspic to generate Encapsulated PostScript.

-svg causes Aspic to generate Scalable Vector Graphics (SVG).

1 Introduction to Aspic (1)

-tr causes Aspic to translate certain input characters; for example, a grave accent is translated into a
typographic opening quote. Details are given in section

-v or --version causes Aspic to display its version number on the standard output, and then exit.

There is also a -testing option that is used in testing to suppress the Aspic version number in the
output, but is not intended for general use.

Error messages are written to the standard error stream. No output is generated if any errors are found
in the input. A few errors are sufficiently serious that Aspic stops immediately, but for many it carries
on and so may output more than one error message. The return code is one of the C values
EXIT_SUCCESS or EXIT_FAILURE, which often equate to zero and one.

2 Introduction to Aspic (1)

2. Simple Aspic examples

This chapter uses some simple examples to introduce the various facilities that are available in Aspic.
Subsequent chapters contain reference material that explains things in more detail.

Aspic operates in a traditional Cartesian coordinate system, with the positive directions to the right
and upwards. For PostScript output the units of length used in Aspic commands are printers’ points.
There are 72 points to an inch. SVG output contains the same dimensions without specifying a unit.
The interpretation is left to the rendering software. On a screen, SVG dimensions are likely to be
treated as numbers of pixels. The examples below all show Aspic source, followed by the resulting
picture. We start with a simple diagram:

box "A"; line; circle "B";

Each Aspic command is terminated by a semicolon, so there are three commands in this example:

(1) The box command causes a box to be drawn, containing the text at its centre. The default box
size is 72 by 36 (that is, 1" x 0.5" for PostScript output). There are commands to change the
default — see chapter 15| — and the size of an individual box can of course be specified (see
below). There is also a magnify command that affects the sizes of all shapes (but not the size of
any text). In this document, all the examples are reduced by a factor of 0.8, so the size of the box
above is actually 0.8" x 0.4".

(2) The line command draws a straight line; as nothing else is specified, the line is drawn in the
current direction of motion, which defaults to the right. The length is the standard horizontal line
length, which defaults to 72.

(3) The circle command draws a circle; as nothing was specified as to how it should join onto its
predecessor, the ‘obvious’ joining position is chosen. The circle is drawn at a standard size.
(Again, there are commands for changing this.) Aspic can draw ellipses as well as circles.

Each Aspic command that causes a shape to be drawn may have any number of text strings associated
with it. In the above example, the box and the circle each have one associated string. For closed
shapes such as these, the strings are centred in the shape. For horizontal lines, the strings are centred
above and below the line, while for other kinds of line they are positioned near the middle of the line.
For example:

line "first" "second"; line down "third" "fourth";

first

second third
fourth

Strings may use different fonts, be of different sizes, and can be coloured. There is also support for
rotated strings. For details, see chapter The commands introduced above may be used with options
that change the size of the shape that is drawn. For example:

box width 100 depth 20; line right 40; circle radius 10;

| —CO

The current direction of motion can be changed by the commands up, down, left, and right. In
addition, an individual line may be drawn in any direction and of any length (without changing the
defaults) by means of appropriate options:

3 Simple Aspic examples (2)

down; box "A"; line; circle "B";
line right 40; line left 20 up 20; line;

AN

The length values for lines are interpreted as distances in the Cartesian coordinate directions rather
than the actual length of the line drawn. There are separate standard values for the horizontal and
vertical lengths, which are 72 and 36, respectively, by default.

line; line up right; line left; line down;

If a sequence of closed shapes occurs, the shapes are joined together according to the current direction
of motion, but a closed shape following a line joins according to the direction of the line.

box "A"; box "B"; box "C"; line;

down; circle "D"; circle "E"; line left;

There is a join option for specifying where a closed shape joins its predecessor:

box "A"; box join top left "B";
circle join centre; box join left "C";

The argument for join specifies a point on the new shape that is to be joined to a point on the previous
shape. Thus, in the above example, the top left-hand corner of the second box is the point which is
joined to the first box. The joining point on the previous shape is the complementary position by
default, but it can be also specified explicitly. For example:

box "A"; box depth 50 join top left to top right "B";

4 Simple Aspic examples (2)

There are nine possible joining points — the four corners, the midpoints of the four edges, and the
centre point. The midpoints of the edges are identified by the unqualified names of the edges. Thus, if
the only joining information is an edge name, two boxes are joined with the midpoints of the edges
aligned:

box "A"; box depth 50 join left "B";

Joins can refer to items other than their immediate predecessors by the use of labels. For example:

BOXA: box "A";
BOXB: box "B";
circle radius 10 join centre to centre of BOXA;
box width 20 depth 20 join centre to centre of BOXB;

®

The join option may also be used for specifying how a closed shape joins onto a line:

N

When a circle or an ellipse is being joined, the ‘corner’ joining points refer to points on the circumfer-
ence, not the corners of the bounding box. The size of an ellipse is specified as a width and a depth,
which determine the lengths of the horizontal and vertical axes. For example:

line; ellipse join top;

ellipse width 100 depth 20;
ellipse width 20 depth 60;

Lines may be drawn dashed, and, by using the arrow command, with arrowheads on one or both
ends.

line dashed; arrow down; arrow left both;
arrow down back dashed;

5 Simple Aspic examples (2)

The dash parameters (lengths of lines and gaps) are adjustable (see chapter . By default, arrow
requests an arrowhead on the end of the line. The option both gives arrowheads on both ends,
whereas back gives a backward-pointing arrowhead only.

Circular arcs are another form of non-closed shape that Aspic supports. By default an arc is drawn in
an anti-clockwise direction, for 90 degrees, and at a standard radius (default 36). If an arc follows a
line or another arc, it continues in the same direction by default. If the very first shape is an arc, its
initial direction is upwards.

arc "A"; line left; arc "B";

S

The options up, down, left, and right can be used to specify a different initial direction for the arc:

The angle subtended, the radius, and clockwise drawing can be specified:

line; arc down;

arc "A"; arc angle 180 radius 20 "B";
arc clockwise angle 270 radius 40 "C";

A

C
Arcs can be drawn from and to particular points, and, by using the arcarrow command, with
arrowheads.

line; arcarrow from end to start;

SN

In this example, the positions ‘end’ and ‘start’ are taken to refer to the last-drawn shape. To refer to
other shapes, labels are used:

BOXA: box "A"; line; ellipse "E";

arcarrow from top to top of BOXA;

A

When an arc of this type is drawn, either the radius or the angle subtended at the centre of the arc or
the ‘depth’ of the arc or a point through which the arc is to pass may be specified, but only one of
these. The ‘depth’ of an arc is the length of the line from the middle of the arc to the middle of the
line joining the endpoints. If none of the above parameters is specified, a subtended angle of 90
degrees is used. Here is an example that shows the different ways of specifying arcs:

6 Simple Aspic examples (2)

AA: line;

arc from end to start "1";

arc from end of AA to start of AA angle 180 "2";

arc clockwise from end of AA to start of AA radius 100 "3";
BB: arc to start depth 24 "4";

arc clockwise to start via middle of BB plus (10,-10) "5";

@

The fifth arc in this example passes through a point that is defined as
middle of BB plus (10,-10)

The ‘middle of BB’ is halfway along the fourth arc; the plus qualifier applies a relative offset that is
10 units to the right and 10 down from this midpoint. The starting and ending points of straight lines
can also be specified explicitly; if both are specified, that determines the length of the line.

AA: line up; BB: line right;
line from middle of AA to middle of BB;

:

Positions on a line or arc may be specified as start, middle, or end (the word centre is reserved for
the centre of a closed shape, or for the centre point of a circular arc). More precise positioning can be
achieved by specifying a fraction of the way along the line from a named position:

AA: line right 100;
arrow up from 0.2 start of AA;
arrow down from 0.3 end of AA;

—>

!

The upward arrow starts at a point that is 0.2 of the way along the line from the start, and the
downward arrow starts at a point that is 0.3 of the way along the line from the end. This feature also
applies to the edges of boxes:

AA: box;
arcarrow from 0.1 right of AA to 0.2 top of AA angle 270;

Positions along the top and bottom are measured from the left; positions on the sides are measured
from the bottom. If these options are used with a circle or an ellipse, the positions used are those of

7 Simple Aspic examples (2)

the circumscribing box. Any position can be further modified by an explicit distance, specified as a
vector enclosed in parentheses following plus. In the next example, the arrow starts at a position 20 to
the right of the middle of the line, and 5 above it:

line; arrow up from middle plus (20,5);

f

There is one further positioning feature that is useful for horizontal or vertical lines. It allows the end
of such a line to be aligned with a given point, which is often the easiest way to describe certain kinds
of drawing:

BOXA: box "A";

line down 5; arc; arrow right 10; box "B";
line up align centre of BOXA;

arrow to right of BOXA;

The align option is used in place of to; it defines a position, but only one of its coordinates is used as
a coordinate of the end of the line. In the example above, a vertical line was specified, and so only the
vertical coordinate of ‘centre of BOXA’ was used.

As well as circular arcs, Aspic supports cubic Bezier curves. An end point must be supplied for the
curve command; the start is deduced from the previous shape if not specified. Without any further
parameters, the shape is almost the same as a circular arc. Like circular arcs, the default is to draw the
curve anti-clockwise.

A: line down 20 left; line down 20 right; curve to start of A;

=)

The shape of a cubic Bezier curve is determined by two control points. The curve leaves the start in
the direction of the first one, and approaches the end from the direction of the second, but passes
through neither of them. Aspic creates two default control points as follows: in a rotated coordinate
system where the line joining the end points is the x-axis, the first control point is a quarter of the way
along the line and an equal distance from it. The other control point is in a matching position at the
other end of the line.

The default control points give an almost circular arc, but the ¢l and ¢2 options can be used to move
the control points. Their argument is a pair of parenthesized dimensions. The first moves parallel to
the joining line, with a positive value moving further from the end point. The second number moves
away from the line if positive, or nearer if negative. As a convenience, the ¢s option can be used to set
both to the same values, thus preserving the symmetry of the curve. This example shows the positions
of the control points:

A: line down 20 left; B: line down 20 right;
curve to start of A cs (-5,30);

line dashed down 5 right 40 from start of A;
circle filled 0 radius 1;

line dashed up 5 right 40 from end of B;

8 Simple Aspic examples (2)

circle filled 0 radius 1;

If c¢1 or ¢2 is used with cs, the result is cumulative.

A: line down 40; curve to start cs (50,0) cl1 (0,100) c2 (25,-10);

L

If the wavy option is given, the default position of the second control point is moved to the opposite
side of the curve.

line; curve wavy to start;

w@

Arrowheads are not supported for Bézier curves. Because their shape can be so varied, the default
position for any text is the middle of the line joining the end points.

Aspic pictures are best specified as a sequence of shapes whose positions are inter-related. This makes
the pictures easy to adjust as they are being created, and also easy to change subsequently. However,
many pictures contain shapes that are not connected to other shapes in the picture. Aspic does allow
absolute positioning for shapes, but it is often more useful to position these shapes in relation to the
others. This can be done using invisible lines, boxes, arcs, and curves. If you use iline, ibox, iarc, or
icurve instead of line, box, arc or curve, the relevant lines are not drawn. There are also icircle and
iellipse commands.

box "A"; iline right 30 down 10; box "B";

ibox width 150 "iboxes are helpful" "for centring text";
A B iboxes are helpful
for centring text

The shapes in the examples shown so far have all been just outlines, but Aspic also contains facilities
for causing closed shapes to be filled with colour or shaded with grey. The commands that define
closed shapes (box, circle, and ellipse) can be specified with a filled option. If it is followed by one
number, that specifies a grey level. Otherwise, it must be followed by three numbers that specify a
colour in terms of red, green, and blue levels. The numbers are separated by commas and/or spaces.
In all cases, the numbers lie between 0 and 1. For example:

box filled 0.5; circle filled 1 0 0O;

In this example, visible closed shapes are used, so their outlines are drawn. If an invisible shape is
filled, no outline is drawn. Filling a shape obliterates items that are ‘beneath’ it. To make it easy to
specify which filled shapes are ‘above’ others, there is a level option that can be used on any drawing
command. The default level is zero; items with a higher value are drawn ‘above’ (later), whereas

9 Simple Aspic examples (2)

items with a lower (negative) level are drawn ‘below’ (earlier). The order in which the items are
defined does not matter. For example:

A: circle filled 0.5;
line right from centre of A level 1;
line left from centre of A level -1;

Arbitrary shapes can be filled by specifying the same shapefilled option on a sequence of lines and/or
arcs/curves that are all at the same level and have the same thickness, colour, and dash characteristics.
The end of the shape is marked by an item with different characteristics (or the end of the input). The
shape is automatically closed, if necessary, by an invisible straight edge from the endpoint to the
startpoint. For example:

line shapefilled 0.5; arc shapefilled 0.5;

aadlV

Sometimes it is necessary to supply a dummy item to terminate one shape when another with the
same characteristics follows immediately afterwards. A line of zero length can be used for this. For
example:

iline right shapefilled 0.5;
iline down shapefilled 0.5;
line left O;

iline down left shapefilled 0.5;
iline right shapefilled 0.5;

\4

Without the dummy, zero-length line, the result is:

iline right shapefilled 0.5;
iline down shapefilled 0.5;
iline down left shapefilled 0.5;
iline right shapefilled 0.5;

When a long sequence of commands all have the same_shapefilled value, you can save typing by
using the shapefill command to set a default (see chapter .

Aspic can be requested to draw a frame round the picture, by means of the boundingbox command.
A filled frame (see section |13.1. can be used to provide a background colour. The boundingbox
command is followed by a dimension that specifies the space to be left between the bounding box and

10 Simple Aspic examples (2)

the frame. In this example the bounding box of the picture is determined by the invisible boxes that
contain the text:

boundingbox 10; ibox "first"; arcarrow; ibox "second";

second

first j

This chapter has introduced many, but not all, of the features of Aspic. The following chapters specify
the form of the input more rigorously, and list each command, together with its options.

11 Simple Aspic examples (2)

3. General operation of Aspic

Aspic processes its input in order, interpreting commands that are instructions for moving about on
the plane and causing shapes to be drawn and text to be output. There are many parameters for
controlling the size and style of the shapes that are drawn; all of them have defaults, and most of these
can be altered. Aspic builds up data structures in main memory that represent the final image. If it
reaches the end of the input without finding any errors, it outputs a description of the picture in the
appropriate output language.

For PostScript output, the units of length used by Aspic are printers’ points, of which there are 72 to
an inch. For SVG output, the units are interpreted by the SVG processor, and on screen displays, they
are often taken as pixels unless a specific size is defined.

Aspic distinguishes between closed and open shapes. The closed shapes are boxes, circles, and
ellipses, and the open shapes are lines, circular arcs, and Bézier curves. There are default sizes for
everything, and text strings may be associated with each shape. Unless explicitly positioned, each
shape is placed adjacent to its predecessor, in many cases taking note of the current direction, whose
default is to the right. For example, the sequence:

box; arrow; box;

places the three items in a horizontal row. There are commands to change the current direction, and,
for the drawing commands, options to override it for individual items.

Only very simple pictures can be drawn as a series of shapes in which each shape is positioned
relative to its predecessor. Aspic allows shapes to be labelled so that branches in the sequence of
shapes may be constructed, and cross-references between different parts of the picture may be
expressed. The previous chapter contains several examples.

3.1 Position of the coordinate origin

You can specify absolute positions on the drawing plane, but it is better to describe a picture in terms
of relative positions between the shapes that comprise it, because such a description is much easier to
adjust while you are creating the picture. If the first item in a picture is specified without an absolute
position — this is normally the case — it is positioned as follows:

* A closed shape is placed with its centre at the origin.

* A circular arc is placed with the centre of the arc at the origin.
* A straight line or Bezier curve starts at the origin.

However, for most pictures, it is not necessary to worry about absolute coordinates or the position of
the origin.

3.2 The bounding box

Aspic computes a bounding box for the entire picture, and arranges that the bottom left of the
bounding box is positioned at the bottom left of the picture’s output. This means that the origin is not
necessarily at the bottom left of the final picture. The coordinates of the bounding box are included in
the output file and are used by programs that process it to determine the size of the image.

Invisible items that are not part of the boundary of a filled shape, and which have no associated text,
are ignored when Aspic is computing the bounding box. The idea is that such items are assumed to be
used for positioning purposes only. Occasionally you may want an invisible item to be included in the
bounding box calculation. You can do this by providing it with an empty text string.

Because Aspic does not process text strings itself, it can only guess the size of a string when comput-
ing the bounding box. This matters only when a string extends beyond the box defined by the graphic
shapes. A string’s width is guessed as one half the font size times the number of characters in the
string.

12 General operation of Aspic (3)

4. Aspic input

Aspic input consists of a sequence of commands, each of which must be terminated by a semicolon.
Newlines and other white space may appear between the components of a command in the usual way.
The maximum length of an input line is 255 bytes. If a sharp (or ‘hash’) character (#) is encountered
when a command is expected, the remainder of the input line is ignored. This provides a facility for
including comments in Aspic input. Each input line is processed for variable substitutions before any
other processing takes place (see chapter below). This action can be disabled by the -nv command
line option.

4.1 Command format
An Aspic command consists of four components:

label command options strings
A: box dashed width 100 "first" "second";

The case of letters is significant in all the components. Only the command name is mandatory.

* Commands that draw shapes may start with one or more labels, each terminated by a colon. A label
consists of a sequence of letters and digits, starting with a letter. Upper case letters are commonly
used in labels as it makes them stand out. Other commands may not be labelled. Labels must be
unique. For commands inside macros, the special sequence &$ can be used to ensure uniqueness
(seg@.

* Many commands have option specifications that follow the command name. Each option consists
of a keyword, possibly followed by one or more data items. The options may appear in any order,
and except in a few special cases are all optional.

» Following the options, on commands that define lines or closed shapes, and on the text command,
there may be any number of text strings, each enclosed in double quotes. The double-quote charac-
ter itself may be included by doubling. There are some options that can follow a text string; these
are described in chapter |8} The strings specify text that is to be output at an appropriate position,
relative to the item that is drawn for all but the text command, which has special positioning
arrangements. Details of text positioning are given below with each command. Strings may not
extend over line boundaries in the input.

» Strings are interpreted as a sequence of Unicode characters. The inclusion of characters by name
and by number is supported. Details of how the sequence of input bytes is decoded are given in
section Aspic does no typographic processing of strings. This means that any string-specific
processing, such as measuring the string in order to centre it, has to take place in the backend
processor. In PostScript output, PostScript operators are used to do this. In SVG output, an appro-
priate setting of the text-anchor attribute is generated.

A number of command words and option names use the British English spellings ‘centre’, ‘grey’ and
‘colour’. In all cases the American spellings ‘center’, ‘gray’ and ‘color’ are also accepted.

4.2 File inclusion

The include command can be used to insert the contents of a given file into the sequence of Aspic
commands. This can be used, for example, to include a standard header file (which might define fonts
or give names to colours) in a number of different pictures. The command name is followed by a file
name, which is not quoted. For example:

include /home/me/MyAspicHeader;

The include command may not appear inside a macro (see chapter E[), but included files may contain
further inclusions.

13 Aspic input (4)

5. Aspic variables

Aspic supports simple variables, which can be used to save repetition in the input. This feature can,
however, be disabled by use of the -nv command line option. If you are not using Aspic variables, but
are making use of dollar ($) characters in strings, you should use -nv, because otherwise the dollars
will be misinterpreted by Aspic.

When variables are not disabled, a dollar character in an input line introduces a variable substitution.
There is, however, one exception: the special sequence &$ that is used in Aspic macros — see chapter

In all other cases, a dollar character must either be followed by another dollar (indicating a single
literal dollar character), or be followed by a variable name, optionally enclosed in braces (curly
brackets). Variable names start with a letter and contain letters and digits. Braces are required if the
character that follows the variable name is a letter or a digit.

When each input line is read, the values of any variables that are mentioned are substituted before any
other processing takes place. A variable must be defined before it is used. The contents of a macro
(see chapter |6)) are processed for variable substitutions when the macro is defined, not when it is
called.

Variables are given values by means of the set command, which is followed by a variable name
(without a dollar) and a string value. The value of a variable can be changed as many times as you
like during the course of a picture description. For example, this command defines the variable red to
contain the three colour values for the colour red:

set red "1,0,0";
Later in the input file, the variable could be used like this:
box filled S$red;

At the start of an Aspic run, the variable $date is initialized to contain the date and time, and the
variables $creator and $title are each set to the string ‘Unknown’. These three variables are used to
create comments at the start of the output, but otherwise they are treated like any other variable, and
you can change them as required. For example, you might like to set $date to the date on which the
picture was defined.

14 Aspic variables (5)

6. Aspic macros

To save a lot of command repetition, Aspic contains a simple macro facility that allows you to define
compound commands. A macro is defined by the command macro, which is followed by a name and
a macro body. The name must not be the same as the name of any inbuilt command. If it is the same
as a previously defined macro, the new macro overrides. The body consists of either all the following
text up to the first non-quoted semicolon, or, if the first character after the name is an opening brace,
all the text up to the next non-quoted closing brace, which must be followed by a semicolon to
terminate the macro command. For example:

macro bigbox box width 100 depth 100;
macro box2 { box; box; };

In the first example, the terminating semicolon is not part of the macro body. A macro definition may
extend over more than one line. Variables are substituted into the body of a macro when it is defined;
there is no re-substitution when the macro is called. If you need such a facility, it can be obtained by
passing variables as arguments to macro calls.

Macros are called by using their names as command names. A macro body may contain calls to other
macros, but recursion is not allowed. Macros can be called with arguments, which are treated as
character strings. White space is used to delimit macro arguments, unless they are enclosed in either
single or double quotes. If double quotes are used, they are retained when the contents of an argument
are substituted into the macro body.

Macro arguments are referenced in the macro body by items of the form &1, &2, etc. These refer-
ences are replaced by the actual argument values each time the macro is called. If the character & is
required for another purpose in a macro body, it must be doubled. If the special string &$ appears in a
macro body, it is replaced throughout by a sequence number that is incremented for each macro call.
This can be used to generate unique labels for shapes that are drawn in macro bodies. A nested macro
call will have a different value for &$.

The following example starts with the definition of a macro that draws a box containing text given as
one or two arguments, with two lines attached to it. This macro is then used to generate an array of
boxes. Because Aspic allows multiple labels on shapes, these compound items can themselves be
labelled, as shown in this example:

macro item {
B&S: box &1 &2; line down;
line right 20 from right of B&S;
}i

item "first" "second";
MID: item "third";

item "fourth" "fifth";
arrow up 20 from MID;

i
fourth

— third o eay

Note the use of &$ to generate a unique label within the macro. When an macro call is labelled, the
first command inside the macro must be a command for which a label is allowed, that is, it must draw
something.

first
second

Because the macro in the example above was not defined with double quotes surrounding the argu-
ment references, double quotes had to be used when calling it in order to supply strings to the box

15 Aspic macros (6)

command. If the quotes had been present in the definition, they could not be have been used in the
calls, but single quotes could have been used if the arguments contained spaces.

If an argument that has not been supplied is referenced, nothing is substituted; thus the second call of
item above expands into a call to box with only a single string argument. If too many arguments are
supplied, the surplus ones are left in the input following the substituted text.

It is not necessary to include a semicolon before a terminating brace when defining a macro. If the
semicolon is present, it is included in the replacement text when the macro is called. Sometimes it is
useful to be able to set up a macro that generates part of a command, so that additional options can be
added on each call. This can be done by omitting the terminating semicolon. In this example, any text
following the macro name is added to the command:

macro slotbox { box width 200 depth 20 };
slotbox dashed "text for slotbox";

When such additional text is required, and also not all the arguments of a macro are to be supplied,
the vertical bar character can be used to mark the end of the arguments. For example:

macro dashbox { box dashed &1 &2; arrow };
dashbox "first" "second";
dashbox "third" | "fourth";

. | ‘
| Sefclzrosrt]d > third %

In the first call, the two strings are taken as arguments of the macro; in the second call, the second
string is added onto the end of the replacement text, and therefore goes with the arrow command.

16 Aspic macros (6)

7. Types of value used in commands

Unless explicitly stated to be an integer, a number may always be specified with an optional decimal
point and fractional part. Negative numbers are preceded by a minus sign. Non-integer numbers are
held in a fixed-point format to three decimal places. In the descriptions of the commands that follow,
the following types of value are used:

7.1 <angle>

A non-negative number, specifying an angle in degrees.

7.2 <boxpoint>

One of the phrases fop, bottom, left, right, centre, bottom left, bottom right, top left, or top right. The
first four refer to the midpoints of the respective sides of a box; the last four refer to the corners.

7.3 <colour>

Three numbers in the range 0.0 to 1.0, separated by spaces and/or commas. They specify a colour by
the amount of red, green, and blue, respectively, with 0.0 meaning none and 1.0 the maximum amount
of each component.

7.4 <greylevel>
A number in the range 0.0 to 1.0, where 0.0 is black and 1.0 is white.

7.5 <integer>

A positive or negative integer.

7.6 <label>

A label that identifies an existing drawing item, that is, one whose definition falls earlier in the input
file.

7.7 <length>

A non-negative number, specifying a length.

7.8 <position>

A <position> identifies a point in the plane. It is either an absolute position, specified as a pair of x-y
coordinates, separated by a comma and enclosed in parentheses, or a relative position, specified as
follows:

[<fraction>] <point> [of <label>] [plus <vector>]

where all but <point> are optional. The position is computed relative to the shape whose <label> is
given, or if no <label> is mentioned, relative to the previous drawn shape.

» If the referenced shape is a box, circle, or ellipse, <point> must be a <boxpoint>. The ‘corner’
points of a circle or ellipse are the intersections of the shape with the diagonals of the bounding
box.

« If the referenced shape is an arc, curve, or line, <point> is one of the words start, end, or middle.
These refer to positions along the arc, curve, or line. In addition, for an arc, centre, meaning the
centre of the circle of which the arc is part, may be specified.

* If there is no referenced shape, this form of <position> causes an error.

17 Types of value used in commands (7)

<fraction> is a number between 0.0 and 1.0, specified either as a decimal fraction (for example, 0.5)
or as two numbers (usually, but not necessarily integers) separated by a slash (for example, 1/3). It
specifies a position part-way along a line, arc, or curve. If <fraction> is present, there are some
additional constraints on <point>:

 If the referenced object is closed, then <point> must be one of top, bottom, left, or right, and the
line to which <fraction> refers is the appropriate side of the bounding box of the object. The
fraction is measured from the left of horizontal lines, and from the bottom of vertical lines.

* If the referenced object is not closed, then <point> must be start or end — the fraction is taken from
that end of the line, arc, or curve.

In effect, the presence of <fraction> changes the meaning of top, bottom, left, or right as a <point>.
With no <fraction>, these words refer to the midpoints of the respective sides of the bounding box;
when <fraction> is present, they refer to the sides themselves.

The final optional component of a <position> is the word plus followed by a <vector>, which is two
numbers separated by a comma and enclosed in parentheses. It specifies a Cartesian adjustment to
the position defined by the remainder of the <position>. Here are some examples of <position>
specifications:

(45,67)

top

top plus (10,0)

centre of A

bottom right of B plus (0,-5)
1/3 top of C

middle

end of linel

0.25 start of 1line3 plus (0,7)

18 Types of value used in commands (7)

8. Drawing objects and text

All the commands that cause something to be drawn and/or text to be output are described in this
chapter. Each command is summarised by listing its options and the type of value that must follow
each option keyword, where relevant. A value type that is followed by an asterisk is optional, and a
vertical bar is used to separate alternative value types. Some combinations of options are mutually
exclusive, and these are noted in the description of each command below.

When a command does not specify an option, a default value is used. There are separate sets of
defaults for boxes, circles, ellipses, and lines (both straight and curved). Many of these defaults can be
changed by the commands that are described in chapter (Changing environment parameters).

The thickness, dashed, colour, and grey options are common to all these commands except text. The
first specifies the thickness of lines that are drawn. If dashed is specified, lines are drawn dashed, with
the lengths of dashes and spaces controlled by the relevent setting in the current environment (see
chapter . The colour of lines is specified either by colour, which must be followed by three
numbers (for red, blue, and green components), or by grey, which must be followed by a single
number. This is a shorthand for colour followed by three identical numbers. The obsolete synonym
greyness is also supported. Colour numbers lie in the range 0.0. to 1.0 inclusive. They specify the
amount of colour to be used. In the case of grey, a value of 0.0 is black and 1.0 is white. If no colour
option is present, default values are used.

The level option is common to all these commands (including text). It is useful when filled shapes are
being drawn, because filling a shape obliterates items that are drawn ‘below’ it. The default level is
zero; items on levels greater than zero are drawn ‘above’ and items with levels less than zero are
drawn ‘below’. The default can be changed by the level command (see chapter .

Many of the commands also have filled and shapefilled options. For closed shapes (box, circle,
ellipse), filled specifies a colour with which to fill the shape. It can be followed either by three
numbers to specify red, green, and blue components, or by a single number, to specify a grey level.
For lines or arcs that start or end with arrowheads, filled specifies the colour with which the arrow-
head is filled.

The shapefilled option also takes either one or three numbers as its argument. It is available on
commands for drawing lines, arcs, and curves. A sequence of such commands with the same
shapefilled values, and also the same thickness, dash, colour, and level parameters, is interpreted as a
closed shape that is to be filled with the appropriate colour. If the lines do not define a closed shape,
an invisible straight line from the end to the start bounds the area that is filled. If one such closed
shape immediately follows another with the same characteristics, you may need to insert a dummy
command without a shapefilled option, in order to terminate the first shape. A line of length zero can
be used for this.

Options may be specified in any order, and may be followed by any number of strings enclosed in
double quotes (with doubling for any double quotes within the string), followed optionally by a
<vector> (as described above in the definition of <position>) and one of /1 (the letter ell), /r, or /c.
If present, the <vector> must come first. For example:

"the quick brown fox"

"move this up" (0,20)

"justify right"/r

"move left and centre" (-20,0)/c

The presence of a <vector> causes the position at which the string is output to be modified by the
value of the <vector>. The /1, /x, and /c options specify left, right, or centre justification respect-
ively, with respect to this position. The default justification depends on the shape with which the
string is associated, and is documented below. Other options may also be present, separated by
slashes:

* An sequence of digits is interpreted as a font number for this string. A default font, 12-point
Times-Roman, is provided, numbered zero, The bindfont command can be used to define

19 Drawing objects and text (8)

additional fonts, and the setfont command can be used to change the default font. For further
details of these commands, see chapter and for details of character codes, see section

* A number preceded by a plus or a minus sign is interpreted as an angle of rotation, in degrees.
Positive rotation is anticlockwise. The centre of rotation is the defining position for the string, on
the baseline. For left-justified strings it is at the left, for centred strings in the middle, and for
right-justified strings at the right.

* A single unsigned number that contains a decimal point is interpreted as a grey level for the text.
The value must not be greater than 1.0.

* Three comma-separated numbers are interpreted as the red, green, and blue components of a colour
for the text. The values must not be greater than 1.0.

Here are some examples:

"the quick (font 2)"/2 "brown fox (font 5)"/5
"move left and centre (font 3)" (-20,0)/c/3
"coloured and rotated"/1,0.5,0.4/+45

When a command is followed by more than one string, each successive string is placed ‘below’ the
previous one. In the case of a rotated string, ‘below’ takes the rotation into account. Strings that have
no rotation specified adopt the rotation of their predecessor.

bindfont 1 "Times-Roman" 30;
bindfont 2 "Times-Italic" 30;
text "One"/1,0,0/+45/1 "Two"/2 "Three"/1/0,1,0;

Q©
Q) &*QO

8.1 arc
angle <angle>
clockwise
colour <colour>
dashed
down
depth <length>
from <position> | <label>
grey <greylevel>
left
level <integer>
radius <length>
right
shapefilled <colour> | <greylevel>
thickness <length>
to <position>
up
via <position>

A circular arc is drawn in an anti-clockwise direction from its starting point to its ending point, unless
the clockwise option is present, in which case the arc is drawn clockwise. The position, size, and
orientation of an arc may be specified in one of four different ways:

(1) If neither from nor to is specified, the arc is positioned according to the previously drawn shape.
The depth and via options may not be given. The user may supply either or both of a radius and

20 Drawing objects and text (8)

an angle. If no radius is supplied, the default arc radius is used; if no angle is supplied, an arc of
90 degrees is drawn.

The initial direction of the arc can be specified by up, down, left, or right. If none of these are
present, and the previous item was a line or arc, the new arc starts by continuing in the same
direction. When an arc follows a closed shape (box, circle, or ellipse), the current direction is
used. The direction determines the position on the closed shape from which the arc starts (up
starts from the middle of the top of a box, and so on). If the first item in the input is an arc
without an explicit direction, it is drawn upwards.

(2) If from is supplied without to, either or both of a radius and an angle may be supplied. If no
radius is supplied, the default arc radius is used; if no angle is supplied, an arc of 90 degrees is
drawn. The depth and via options may not be given. If the initial direction of the arc is not
specified, the current direction is used.

(3) If to is given without from, a starting point is determined from the previous shape, and then the
action is as described in the following paragraph. If the previous shape is a line, arc, or curve, its
end point is used; otherwise the direction (explicit or implicit) is used to decide on which side of
the bounding box of the previous closed shape to place the starting point, but not for any other
purpose. The midpoint of the appropriate side is used.

(4) If both from and to are given (or if to is given and from is determined from the previous shape
as just described), there are four mutually exclusive ways in which the size of the arc can be
specified:

(a) The radius option can be used to give an explicit radius; this must not be less than half the
distance between the end points.

(b) The angle option can be used to specify the angle subtended at the centre of the arc.

(c) The depth option can be used to specify the distance between the midpoint of the line
joining the end points and the midpoint of the arc. If the depth option specifies a distance
that is more than half the distance between the end points, an arc of more than 180 degrees
is drawn.

(d) The via option can be used to specify a third point through which the arc is to pass. This
point must not be be on the line joining the end points, and it must also be on the
appropriate side of that line. If it is not suitable, an error message is output.

If none of these options is given, an arc that subtends 90 degrees at its centre is drawn. If more
than one of these options is given, an error message is generated.

If the from option specifies the label of a closed shape without further qualification, the actual starting
point on that shape is determined by the initial direction of the arc.

Texts are output near the midpoint of the arc, and are left-justified by default. The following example
illustrates various types of arc:

A: arc "A";

B: arc clockwise radius 20 angle 180 "B";

C: arc dashed from start of A to end of B angle 190 "C";

arc clockwise dashed from start of A to end of A radius 75 "D";
arc to start depth 30 "E";

arc clockwise to middle of C via middle of A "F";

21 Drawing objects and text (8)

8.2 arcarrow

angle <angle>

back

both

clockwise

colour <colour>

dashed

depth <length>

down

filled <colour> | <greylevel>
from <position> | <label>
grey <greylevel>

left

level <integer>

radius <length>

right

shapefilled <colour> | <greylevel>
thickness <length>

to <position>

up

via <position>

The options for arcarrow are exactly as for arc, but with the addition of filled (specifying a filled
arrowhead), both (which specifies a double-headed arrow) and back (which specifies a backwards-
pointing arrow). If neither both nor back is given, an arrowhead is drawn at the end of the arc.
Arrowheads are drawn within the length of the arc so if, for example, a 90-degree arc is drawn from
absolute angle zero, the arrow head is not horizontal:

<f\

A horizontal arrowhead can be drawn by adding a short linear arrow afterwards, but note that this

extends beyond the end of the arc:

arcarrowy

arc; arrow left 10;

8.3 arrow
align <position>
back
both
colour <colour>
dashed
down <length>*
filled <colour> | <greylevel>
from <position> | <label>
grey <greylevel>
left <length>*
level <integer>
right <length>*
shapefilled <colour> | <greylevel>

Drawing objects and text (8)

thickness <length>
to <position>
up <length>*

The arrow command has exactly the same options as line (see section below), but with the
addition of filled (specifying a filled arrowhead), both (specifying a double-headed arrow), and back
(specifying a backwards-pointing arrow). If neither both nor back is given, an arrowhead is drawn at
the end of the line.

8.4 box
at <position>
colour <colour>
dashed
depth <length>
filled <colour> | <greylevel>
grey <greylevel>
level <integer>
join <boxpoint> to <position> | to <label>
thickness <length>
width <length>

This command causes a rectangular closed box to be drawn. The width and depth options specify the
horizontal and vertical dimensions of the box. The at option specifies the position of the centre of the
box; if not given, the centre point is computed by reference to the previous shape. In the absence of a
join option, if the previous shape was a line or arc, the midpoint of an appropriate side of the box is
joined onto its end. If the previous item was a Bezier curve, the midpoint of the box is positioned at
the end of the curve. If the previous item was a closed shape, the side which is abutted depends on the
current direction. If there was no previous shape, the centre is placed at the origin of the coordinate
system.

The join option specifies how the box is to be joined to a previous shape, and is mutually exclusive
with at. This option takes three different forms:

(1) If <position> is given, the given point on the box is placed at the given position. For example:

box join bottom right to centre of C;
box join top left to start plus (10,15);

As with all <positions>, if ‘of <label>’ is omitted, the preceding shape is implied.

(2) If no <position> is given, and the previous shape (or the named shape if ‘to <label>’ is present)
is a closed shape, the given point is joined to the complementary point of the referenced shape.
For example:

box join top;
box join top left to A;

(3) If no <position> is given, and the previous shape (or the named shape if ‘to <label>’ is present)
is not a closed shape, the given point is joined to its end.

Note that if boxes of different dimensions are joined by naming their edges, the middle points of the
edges are made coincident:

box "A"; box depth 50 "B";
box width 50 join top "C";

23 Drawing objects and text (8)

Any text items are centred at the centre of the box. Because Aspic does not process the text itself, it
cannot tell whether the text will actually fit into the box.

8.5 circle

at <position>

colour <colour>

dashed

filled <colour> | <greylevel>

grey <greylevel>

level <integer>

join <boxpoint> to <position> | to <label>
radius <length>

thickness <length>

The at option specifies the position of the centre of the circle; it is mutually exclusive with the join
option, which specifies how the circle is to be joined to the previous shape, exactly as for boxes (see
above). Text items are centred at the centre of the circle.

8.6 curve
cl <vector>
c2 <vector>
clockwise
colour <colour>
cS <vector>
dashed
from <position> | <label>
grey <greylevel>
level <integer>
shapefilled <colour> | <greylevel>
thickness <length>
to <position>
wavy

This command draws a Bezier curve; the to option is mandatory. If from is not given, it is deduced
from the previous item. The ¢1 and ¢2 options define adjustments to the curve’s control points. The
first number moves parallel to the line joining the endpoints, positive values moving away from the
relevant end. The second number moves in a perpendicular direction, positive values moving further
away from the joining line. The ¢s option applies to both control points and is cumulative with ¢1 and
c2. The wavy option moves the second control point to an equal distance on the opposite side of the
base line. Text items are placed at the middle of the base line.

8.7 ellipse
at <position>
colour <colour>
dashed
depth <length>
filled <colour> | <greylevel>
grey <greylevel>
level <integer>
join <boxpoint> to <position> | to <label>
thickness <length>
width <length>

The options for ellipse are the same as for circle, except that radius is replaced by width and depth,
which specify the lengths of the horizontal and vertical axes. That is, they specify the size of the
bounding box.

24 Drawing objects and text (8)

8.8 iarc
<as arc>

The iarc command defines an invisible arc. Its options are the same as for the arc command.
Although the arc is not actually drawn, any text supplied is output, and the invisible arc can form part
of a shape that is filled. The arc counts towards the bounding box only if there is text, or if it is part of
a filled shape.

8.9 ibox

<as box>

The ibox command defines an invisible box. Its options are the same as for the box command.
Although the box is not actually drawn, any text supplied is output, and the shape is filled if filled is
specified. The box counts towards the bounding box only if there is text, or if it is filled.

8.10 icircle
<as circle>

The icircle command defines an invisible circle. Its options are the same as for the circle command.
Although the circle is not actually drawn, any text supplied is output, and the shape is filled if filled is
specified. The circle counts towards the bounding box only if there is text, or if it is filled.

8.11 icurve
<as curve>

The icurve command defines an invisible Bezier curve. Its options are the same as for the curve
command. Although the curve is not actually drawn, any text supplied is output, and the invisible
curve can form part of a shape that is filled. The curve counts towards the bounding box only if there
is text, or if it is part of a filled shape.

8.12 iellipse
<as ellipse>

The iellipse command defines an invisible ellipse. Its options are the same as for the ellipse com-
mand. Although the ellipse is not actually drawn, any text supplied is output, and the shape is filled if
filled is specified. The ellipse counts towards the bounding box only if there is text, or if it is filled.

8.13 iline

<as line>

The iline command defines an invisible line. Its options are the same as for the line command.
Although the line is not actually drawn, any text supplied is output, and the invisible line can form
part of a shape that is filled. The line counts towards the bounding box only if there is text, or if it is
part of a filled shape.

8.14 line
align <position>
colour <colour>
dashed
down <length>*
from <position> | <label>
grey <greylevel>
left <length>*
level <integer>

25 Drawing objects and text (8)

right <length>*
shapefilled <colour> | <greylevel>

thickness <length>
to <position>
up <length>*

This command draws a straight line. The start is given by the from option; if it specifies a label only,
the starting point on the referenced shape is its end point if it is a straight line, arc, or curve.
Otherwise the starting point is determined by the direction of this line. For example, a line to the right
from a box starts at the midpoint of the right-hand edge. The to option can be used to specify the end
point by reference to the previous or some other shape. For example:

box; line from bottom right to 0.25 top;

When the to option is not used, a horizontal and/or a vertical distance (that is, Cartesian coordinates
relative to the start) can be specified by the options up, down, left, or right. If none of these are
present, the line is drawn in the current direction. In this case, and also if a direction is given without
a length, the current default horizontal or vertical length (as appropriate) is used unless the align
option applies (see below). Here are some examples:

line;

line right;

line up right;

line down 20 left;
line down 40 right 60;

The align option can be used only with horizontal or vertical lines. The vertical or horizontal coordi-
nate of the <position> specified by align is used, as appropriate, overriding any other value. For
example:

A: box "A";

L: line right;

B: box "B";
line down from bottom of A;
line right align middle of L;
line up align right of A;

As always, a reference to an unqualified box edge implies the midpoint of that edge.

For a horizontal line, text is positioned at the midpoint of the line, centred by default. If there is more
than one string, they are positioned both above and below the line. For non-horizontal lines, text is
left-justified (by default) close to the midpoint of the line.

8.15 text
at <position>
level <integer>

This command does nothing unless it ends with at least one optional text string. It provides a means
of outputting text without drawing a graphic shape. It may not be labelled, and whatever is set as the
previous shape is unchanged. The text is centre-justified by default, both horizontally and vertically. If
no at option is given, the text is positioned with reference to the previous shape. For a closed shape it
is put at the centre of the shape, for a straight line at the midpoint of the line, for a circular arc at the
centre of the circle. and for a Bézier curve at the midpoint of the base line.

26 Drawing objects and text (8)

String options can be used to make fine adjustments to the position of the text. For example, if text is
placed to the right of a horizontal line, it should normally be specified as left-justified.

line; text at end "ABC";

iline right 20;
line; text at end "ABC"/1;

ABC ABC

In the first of these two examples, the default centre-justification has caused the text to be output on
top of the line. The text command is often the easiest way of positioning strings that are not near the
default string position for a shape.

box width 40 depth 40; text at top "N"; text at bottom "S";
text at left "W"; text at right "E";

N

6%}

27 Drawing objects and text (8)

9. Filled shapes

Boxes, circles, and ellipses are filled when they have the filled option set, or if the boxfill, circlefill, or
ellipsefill commands have been used to set filling as a default (see chapter . If the shape is
invisible, no outline is drawn, and only the filling is shown. Otherwise, the outline is drawn in the
line-drawing colour. For example:

box grey 0.5 filled 0.8; iline right 10; ibox filled 0.8;

A sequence of lines, arcs, and Bezier curves with the same shapefilled values and the same general
characteristics (line width, colour, dash parameters, and level) is turned into a closed outline (if
necessary) and filled. The lines and arcs themselves are drawn as normal, unless they are invisible.
The automatically supplied line that closes such a shape is not drawn. A dummy command such as:

line left O0;

is sometimes needed to separate two successive shapes that have the same characteristics. You can set
a shapefilled value as a default, to save having to repeat it for all the different constituents of a shape.
The ability to save and restore the environment (see chapter can be helpful here:

push; shapefill 0.9 0.5 0.1;

arc; arc; line left; line down 10;
line right; line right; line up 10;
pop;

Arrowheads on lines and arcs are filled if the filled option is set on the appropriate drawing command.
Alternatively, the arrowfill command can be used to specify a default filling colour (see chapter .

The concept of ‘levels’ is important when filled shapes are being drawn, because filling a shape
obliterates anything that is underneath it, even if the filling colour is lighter than what was there
before. It is like using opaque paint. By specifying different levels for different components of a
drawing, you can control the order in which they are output, and therefore which parts are obliterated
by other parts. The default level is zero; items on higher levels are output later (‘above’), whereas
items on lower levels are output earlier (‘below’). Items at the same level are output in the order in
which they are defined. Consider this example:

box filled 0.5; box at centre plus (10,10) filled 0.5;
iline right 10;
box filled 0.5; box at centre plus (10,10) filled 0.5 level -1;

The second box is ‘above’ the first box, but because of the level specification, the fourth box is
‘below’ the third box. A default level can be set by means of the level command (see chapter .

28 Filled shapes (9)

10. Altering the ‘last’ item

Occasionally it is useful to be able to change which shape is considered to be the previous shape
when the next shape is drawn. The goto command, which is followed by a label, is used to do this. It
can be useful in macros. Consider a macro that draws a box with diagonals. When this macro is

called, you may want subsequent shapes to be positioned relative to the box, not to the diagonal lines.
This example shows how this can be done:

macro diag {
A&S: box;
line from top right to bottom left;

line from top left of A&$S to bottom right of As&S;
goto A&S; };

diag; arrow; diag;

The final goto in the macro causes any subsequent shapes to be positioned with reference to the box.

Without the final goto in the macro, the ‘last item’ after a macro call would be the second diagonal
line.

If goto is followed by an asterisk instead of a label, it unsets the last item. Aspic then treats the next
item as if it were the first. This feature is mostly useful for testing.

29 Altering the ‘last’ item (10)

11. Changing the current direction

The current direction defaults to ‘right’. It can be changed by the commands up, down, left, and
right, which have no arguments. The current direction is used in the following circumstances:

ey
2)
3)
)

When drawing a line, if no direction is specified;
When drawing an arc, if no direction is specified and a start point is given without an end point;
When drawing an arc after a closed shape, if neither a direction nor a start point is given.

When one closed shape follows another, to determine their relative positions if no join option is
given;

Note that the current direction is not used when a closed shape follows a line or arc; the position of
the closed shape in this case is determined by the direction of the end of the line or arc. For example,

right; box "A"; arc "1"; box "B";
down; arc "2"; box "C";

B

e
A C

The initial direction of the arcs in this example is determined by the current direction, but the boxes
that follow them are positioned with reference to the ending direction of the arc. (This can be changed
by using the join option of the box command.)

30 Changing the current direction (11)

12. Font control and character coding

Text is output by default in a 12-point Times-Roman font, though certain special characters in
PostScript output may use other fonts, as described in section |12.5] below. Additional fonts can be
specified by the bindfont command, and individual strings can be output in any of the bound fonts.

12.1 The bindfont command

The bindfont command is used to define additional fonts, at specified sizes. The magnify command
(see secti01h3.2|b does not affect the size of text. The syntax of bindfont is as follows:

bindfont <number> <fontname>
For example:

bindfont 1 "Times-Italic" 12;
bindfont 2 "Times-Bold" 16;

The font number must be greater than zero (the default font has the number zero). Once a font has
been bound, it may be referenced in a setfont command to make it the default font, or it may be
specified for an individual text string. For example:

setfont 2; box "this is font 2" "this is font 1"/1;

For PostScript output, the font name is used verbatim. For SVG output, if the name contains a
hyphen, it is split into two parts. The first part (or the whole name if there is no hyphen) is output as
the font-family parameter for text strings. The second part is used to control the font-style and
font-weight parameters. Aspic recognizes the suffixes ‘Italic’, ‘Bold’, and ‘Boldltalic’.

12.2 The setfont command

The setfont command changes the default font for subsequent text strings. It must be followed by a
non-negative font number.

12.3 The textdepth and fontdepth commands

When multiple text items are specified with a drawing command, they are output one below the other.
The default vertical separation is computed from the sizes of the fonts. This can be increased (but not
decreased) by the textdepth command, which sets a minimum vertical separation for subsequent
items.

Aspic also needs to know the approximate height of letters when positioning text vertically, for
example, when centring a single line of text within a box. Since it does not itself do any text
processing, it guesses a height from the font size. This can be increased (but not decreased) by the
fontdepth command, though this should rarely be needed.

12.4 Input character encoding

Aspic assumes that text strings specify characters in Unicode. Using escapes, it is possible to encode
all possible characters using only ASCII input. Characters may also be encoded as UTF-8 sequences
or (for backwards compatibilty) as single bytes. The input byte sequence is handled as follows:

* Bytes with values less than 128, with the exception of ampersand, are interpreted as single-byte
Unicode code points — these are of course identical to ASCIIL. If the -tr command line option is
given, the following translations are then performed:

— A single grave accent character (*) is translated to an opening typographic quote (‘) using code
point U+2018.

— Two grave accents in succession are translated to a double typographic opening quote (‘) using
code point U+201C.

31 Font control and character coding (12)

— A single quote character (') is translated to a closing typographic quote (’), which is the same as
an apostrophe, using code point U+2019.

— Two single quotes in succession are translated to a double closing typographic quote () using
code point is U+201C.

— Two hyphens in succession are translated to an en-dash () using code point U+2013.

If any of the translated characters are required when the -tr option is on, they can be specified
using numerical escapes. It is only the literal characters that are translated.

» If an ampersand character is encountered, the following bytes are inspected:

— An ampersand followed by a sharp (hash) sign and a sequence of digits terminated by a semi-
colon represents the code point defined by the decimal number. For example, © specifies
a copyright symbol.

— An ampersand followed by a sharp (hash) sign, an x, and a sequence of hexadecimal digits
terminated by a semicolon represents the code point defined by the hexadecimal number. For
example, © is another way of specifying a copyright symbol.

— If an ampersand is followed by a letter and then a sequence of alphanumeric characters termin-
ated by a semicolon, it is treated as a named entity reference. Aspic contains a table of named
entities taken from the DocBook documentation. For example, & copy; is a third way of speci-
fying a copyright symbol.

— If an ampersand is not followed by one of the above forms, or if an entity name is not found in
Aspic’s inbuilt list, the ampersand character is treated as a literal.

* When a byte with a value of 128 or above is encountered, it and the following bytes are inspected
to see if they form a valid UTF-8 sequence. If they do, the code point that it encodes is used. If they
do not, the value of the single byte is taken as the code point. This means that isolated high-value
bytes in an otherwise ASCII source are treated as ISO 8859 characters. Several such bytes in
succession might accidentally form a valid UTF-8 sequence, so Aspic cannot be guaranteed to
handle every possible ISO 8859 input document.

12.5 PostScript output character encoding

PostScript output consists entirely of ASCII characters. In strings, parentheses, backslashes, and code
points greater than 127 are escaped using the normal PostScript backslash escape mechanism.

When generating PostScript output, Aspic handles fonts that are defined with PostScript’s standard
encoding as their default in a special way. A font may contain more than 256 characters, though only
256 are accessible in any font ‘binding’, via an encoding vector that translates character numbers to
names. The encoding can be changed when the font is bound.

The PostScript standard encoding is not the same as Unicode, and in any case, Aspic needs to access
more than 256 characters in these fonts. It does this by binding two versions of a font, and re-
encoding both of them. The first is encoded with the first 256 Unicode code points. The second is
encoded with characters 0-127 corresponding to Unicode code points U+0100 to U+017F and
characters with codes greater than 127 corresponding to those Unicode characters with code points
greater than U+017F that are available in the font (for example, typographic quotes). This use of two
fonts is handled automatically.

If a character is not available in a standardly encoded font, Aspic checks to see if it can be found in
the Symbol or Dingbats fonts. The former contains Greek and mathematical characters, and the latter
contains various special symbols such as [. If a character is not available in any of these fonts, it is
output as the currency symbol 2.

The result of this special processing is that, for a font that is standardly encoded by default, Unicode
code points can be used for all the characters in that font, as well as characters in the Symbol and
Dingbats fonts. You do not need to set up any separate special fonts.

32 Font control and character coding (12)

If, on the other hand, you specify a font that does not use the standard encoding by default, Aspic
makes no changes to it. Character values in the range 0-255 will correspond to its default encoding.
The behaviour of other character values is undefined.

12.6 SVG output character encoding

SVG output consists entirely of ASCII characters. In text strings, angle brackets and ampersands are
converted to the named XML entities > ;, &1t ;, and &, respectively. Characters whose code
points are greater than 127 are output as hexadecimal numerical escapes. For example, the copyright
character is output as ©.

33 Font control and character coding (12)

13. Overall Aspic configuration

This chapter describes commands that affect the overall appearance of the picture.

13.1 boundingbox

This command causes Aspic to draw a frame round the picture. It must be followed by a length,
specifying the width of gap between the actual bounding box of the picture, and the frame. For
example,

boundingbox 20;

If a value of zero is given, the frame that is drawn is the actual bounding box. Because Aspic does not
process text items itself, it has to guess a bounding box for them, and so under some circumstances
the computed bounding box for a picture may not be strictly accurate.

The gap width may optionally be followed by any of the following options of the box command (see
section [8.4): colour, dashed, filled, grey, thickness. For example:

boundingbox 5 dashed filled 0.8, 0.8, 0 thickness 1 colour 1,0,0;
circleradius 15; circle "A";
iline right 5; circle filled 1,1,1 "B";

If dashed is specified, the dash parameters are taken from the boxdash setting in the current environ-
ment at the time that boundingbox is obeyed. If boundingbox appears more than once, the last set of
parameters is used.

13.2 magnify

This command specifies overall magnification of the graphic items in a picture. It must be followed
by a single number. For example

magnify 0.8;
magnify 1.5;

Magnification applies to those shapes that follow this command. Subsequent appearances of magnify
apply cumulatively to the previous magnfication. Magnification does not apply to text. If smaller or
larger text is required, suitable fonts must be set up and used.

13.3 resolution

This command sets the resolution of the output; it must be followed by a single fixed-point number.
All output dimensions are rounded to this resolution. The default depends on the output style. For
PostScript it is 0.12, which corresponds to 600 dpi; for SVG output it is 0.001, which disables
rounding. If resolution appears more than once, the last value is used.

34 Overall Aspic configuration (13)

14. Saving and restoring the environment

The Aspic environment consists of a number of parameters that control the way items are drawn. They
are listed in the following table, together with their initial values:

arc radius 36.0
arrowhead filling no filling
arrowhead length 10.0
arrowhead width 10.0

box dash parameters 7.0 5.0
box depth 36.0

box edge colour 0.0 0.0 0.0
box edge thickness 0.5

box filling no filling
box width 72.0

circle dash parameters 7.0 5.0
circle edge colour 0.0 0.0 0.0
circle edge thickness 0.4

circle filling no filling
circle radius 36.0
current direction right
ellipse dash parameters 7.0 5.0
ellipse depth 36.0

ellipse edge colour 0.0 0.0 0.0
ellipse edge thickness 0.4

ellipse filling no filling
ellipse width 72.0

level 0

line dash parameters 7.0 5.0
line colour 0.0 0.0 0.0
line horizontal length 72.0

line thickness 0.4

line vertical length 36.0
magnification 1.0

shape filling no filling
text colour 0.0 0.0 0.0
text line depth 12.0

text font 0

text font depth 6.0

Many of these values can be overridden for a single item by the use of options on the drawing
command. There are also commands for dynamically changing these values, so they become the

defaults for com

imands that do not specify the relevant options. The magnify command is described

in section |13.2

and commands to change the current direction are described in chapter

Commands to change the remaining values are described in the next chapter.

It is often useful to be able to save the current state of the environment and restore it later. The push
and pop commands are provided to do this. The push command puts a copy of the current environ-
ment onto a stack, and pop restores the environment from the top item on the stack.

35 Saving and restoring the environment (14)

15. Changing environment parameters

In addition to the commands for changing the current direction and the magnify command, which are
specified above in chapter and section respectively, the following commands are provided for
changing the values of environmental parameters. The changed value applies to subsequently defined
items, and a value may be changed as often as necessary. The entire environment can be saved and
restored by means of the push and pop commands.

Most of these commands take a single numerical argument. The exceptions are those that set dashed
line parameters, and those that specify a colour. The former take two arguments, specifying the length
of dashes and the length of gaps, respectively, and the latter take three arguments, specifying the red,
green, and blue components of the colour. Setting a grey value is equivalent to setting a colour with
three identical values.

arcradius default radius for arcs
arrowfill fill colour for arrowheads
arrowlength length of arrowheads
arrowwidth width of arrowheads
boxcolour colour of box edges
boxdash dash parameters for boxes
boxdepth default depth of boxes
boxfill colour of box interiors
boxgrey greyness of box edges
boxthickness thickness of box edges
boxwidth default width of boxes
circlecolour colour of circle edges
circledash dash parameters for circles
circlefill colour of circle interiors
circlegrey greyness of circle edges
circleradius default radius of circles
circlethickness thickness of circle edges
ellipsecolour colour of ellipse edges
ellipsedash dash parameters for ellipses
ellipsedepth default depth of ellipses
ellipsefill colour of ellipse interiors
ellipsegrey greyness of ellipse edges
ellipsethickness thickness of ellipse edges
ellipsewidth default width of ellipses
fontdepth minimal character depth
hlinelength default horizontal length for lines
level default item level
linecolour colour of lines

linedash dash parameters for lines
linegrey greyness of lines
linethickness thickness of lines

setfont the current font

shapefill colour for shapes defined by lines/arcs
textcolour colour for text

textdepth minimal vertical text separation
vlinelength default vertical length for lines

Each kind of closed shape has its own set of parameters for controlling the default thickness and
colour of the lines used to draw it, and the appearance of dashed lines. Setting the dash parameters
does not of itself cause dashed lines to be drawn; the dashed option must be given with the drawing
command. The default thickness, dashedness, and colour of arcs and curves is the same as that for
straight lines; hence there are no separate commands. For example:

linethickness 6; linegrey 0.5;
boxthickness 4; boxgrey 0.8;

36 Changing environment parameters (15)

arc left; line; box; line; arc up;

C_—1

Those commands that specify filling can be followed either by a single number, to specify a shade of
grey, or by three numbers for a general colour. To turn off filling, a single negative number should be
given. For example:

circlefill 0.5; circle; circlefill 0.8 0.2 0.1;
C: circle; line right 36;
circlefill -1; circle join left to right of C;

Note that turning off filling is not the same as filling with white. If the third circle above is filled with
white, it would hide the horizontal line. The textdepth parameter controls the minimal vertical
separation of multiple text items. For example:

box "one" "two"; textdepth 24; box "three" "four";

three
one

two

four

The fontdepth parameter can be set to the approximate height of letters in a font. It is used when
positioning text vertically, for example, when centring a single line of text within a box. However, this
parameter is used only when it is greater than the depth computed from the size of the font.

37 Changing environment parameters (15)

arc
arcarrow
arcradius
arrow
arrowfill
arrowlength
arrowwidth
bindfont
boundingbox
box
boxcolour
boxdash
boxdepth
boxfill
boxgreyness
boxthickness
boxwidth
circle
circlecolour
circledash
circlefill
circlegrey
circleradius

circlethickness

curve
down

ellipse
ellipsecolour
ellipsedash
ellipsedepth
ellipsefill
ellipsegrey

ellipsethickness

ellipsewidth
fontdepth
goto
hlinelength
iarc

ibox

icircle
icurve
iellipse
iline
include

left

level

line
linecolour
linedash

linegrey
linethickness
magnify

16. List of commands

This is a complete list of all Aspic commands.

draw a circular arc

draw a circular arc with arrowhead(s)

set default arc radius

draw a straight line with arrowhead(s)

set arrowhead fill colour

set length of arrowheads

set width of arrowheads

bind a new font

enclose picture in frame

draw a box

set default colour for boxes
set dash parameters for boxes
set default depth for boxes

set box fill colour

set default greyness for boxes
set default line thickness for boxes
set default width for boxes
draw a circle

set default colour for circles
set dash parameters for circles
set circle fill colour

set greyness for circles

set default radius for circles
set thickness of lines for circles
draw a Beézier curve

set current direction

draw an ellipse

set default colour for ellipses
set dash parameters for ellipses
set depth of ellipses

set ellipse fill colour

set greyness for ellipses

set line thickness for ellipses
set width of ellipses

set minimal height of letters
set named shape as previous
set default horizontal line length
draw an invisible arc

draw an invisible box

draw an invisible circle

draw an invisible Beézier curve
draw an invisible ellipse

draw an invisible line

include a file’s contents

set current direction

set default level

draw a line

set colour for lines (and arcs and curves)
set dash parameters for lines (and arcs and

curves)

set greyness for lines (and arcs and curves)
set thickness of lines (and arcs and curves)

magnify or reduce the picture

38

List of commands (16)

macro
pop

push
resolution
right

set

setfont
shapefill
text
textcolour
textdepth
up
vlinelength

define an Aspic macro

restore environment from the stack
push environment onto the stack
set output resolution

set current direction

set value of variable

set current font

set drawn shape fill colour

output text at given position

set text colour

set minimal separation of text items
set current direction

set default vertical line length

39

List of commands (16)

	Title page
	Contents
	1. Introduction to Aspic
	 1.1 The aspic command

	2. Simple Aspic examples
	3. General operation of Aspic
	 3.1 Position of the coordinate origin
	 3.2 The bounding box

	4. Aspic input
	 4.1 Command format
	 4.2 File inclusion

	5. Aspic variables
	6. Aspic macros
	7. Types of value used in commands
	 7.1 <angle>
	 7.2 <boxpoint>
	 7.3 <colour>
	 7.4 <greylevel>
	 7.5 <integer>
	 7.6 <label>
	 7.7 <length>
	 7.8 <position>

	8. Drawing objects and text
	 8.1 arc
	 8.2 arcarrow
	 8.3 arrow
	 8.4 box
	 8.5 circle
	 8.6 curve
	 8.7 ellipse
	 8.8 iarc
	 8.9 ibox
	 8.10 icircle
	 8.11 icurve
	 8.12 iellipse
	 8.13 iline
	 8.14 line
	 8.15 text

	9. Filled shapes
	10. Altering the 'last' item
	11. Changing the current direction
	12. Font control and character coding
	 12.1 The bindfont command
	 12.2 The setfont command
	 12.3 The textdepth and fontdepth commands
	 12.4 Input character encoding
	 12.5 PostScript output character encoding
	 12.6 SVG output character encoding

	13. Overall Aspic configuration
	 13.1 boundingbox
	 13.2 magnify
	 13.3 resolution

	14. Saving and restoring the environment
	15. Changing environment parameters
	16. List of commands

